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Abstract

We show that weak concavity of the cost function leads to optimality of single prize in contests

with maximal performance objective, which generalizes the previous result in Chawla et al. (2015).

Moldovanu and Sela (2001) show that, with the constant elasticity functional form, enough con-

vexity can provide a rationale for multiple prizes under total performance objective. Surprisingly,

we find optimality of single prize continues to hold for arbitrary degree of convexity under maximal

performance objective when the number of contestants is three. On the contrary, if the cost function

is piecewise linear, then the convexity argument for multi-prize can be restored. Furthermore, We

find that in terms of optimal prize allocations there is an interesting relationship between the two

objectives. In the derivation of the results, a series of simple facts about the winning probability

functions is presented, which may be useful for future works in contest theory and multi-object

auction theory.
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1 Introduction

Instead of contracts, contests may be used for procurements (either private or public), or more gen-

erally incentivizing agents to produce better performances, with the advantage of mitigating moral

hazard problems (but may induce collusion). The contest designer, or the principal, typically has the

freedom of choosing a multi-prize allocation or simply a single prize allocation, which immediately

leads to the following question: should there be multiple prizes or just one prize, or when to set a

single prize and when multiple prizes? Clearly the answer depends on the objective of the principal.

In many situations, only the best performance is useful for the principal and hence the objective

is to maximize the maximal performance. Research tournaments, sponsored either by governments

or private companies, are typically meant to find the most efficient solutions for practical problems,

e.g., vaccines, engines, standards of technological products, and so on. As a concrete example, in

2006 Netflix announced a million dollar challenge for a recommendation algorithm (to recognize

customers’ preferences and recommend contents accordingly) that can improve the current one by

10%. The emergence of internet even makes it possible for individuals to post questions on Q&A

web sites and reward the best answer (with coveted virtual coins) among the ones created by large

numbers of talented internet users.

The pioneering work by Chawla et al. (2015) shows that if the cost of producing performance is

linear, then it is optimal for the principal to set a single prize. We show that the single-prize optimality

can be extended to weak concave cost functions, using some simple facts about the win probability

functions together with an amplification lemma.

The answer for the convex case is more subtle. Under another common objective, the total per-

formance objective where the principal enjoys the total performances of all contestants, Moldovanu

and Sela (2001) show that a convex-enough cost function (e.g., based on the familiar Arrow-Pratt

coefficient) can provide a rationale for multi-prize allocations. At the first glance, the two kinds of

objectives appear to be very different in terms of optimal prize allocation. Intuitively, if the cost func-

tion is convex enough, on the margin it can be too costly to incentivize the champion to produce

performance and “cheaper to buy” marginal units of performance from the runners-up. Hence, the

optimality of multiple prizes under total performance objective follows naturally since the principal

is indifferent among whom the marginal performance is produced from. On the other hand, under

maximal performance objective, only the champion’s performance is relevant and the performances of

the runners-up are simply wasted, one may expect that it should always be optimal to keep the whole

prize budget for the champion. Indeed, with the same convex cost function (constant elastic) as in

Moldovanu and Sela (2001), we show that single-prize optimality continues to hold independent of

the degree of convexity when the number of the contestants is three. On the contrary, we also find

that if the cost function is piecewise linear, then optimality of multi-prize allocations can be restored

if it is convex enough. Hence, not only the convexity but also the exact functional form is relevant for

determining the optimal number of prizes.

The results above appear to suggest that there is a connection between the two objectives in terms

of optimal prize allocations. Indeed, we find: if it is optimal to set a single prize under total perfor-
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mance objective, then it is also optimal to set a single prize for the maximal performance objective;

The contrapositive statement is also true, i.e., if it is optimal to set multiple prizes for the maximal

performance objective, then it is also optimal to set multiple prizes for the total performance objective.

In addition, we show that the main results above can be smoothly derived by using a series of

simple facts about the winning probability functions, which may be useful for similar analyses in

contest theory and multi-object auction theory.

The rest of the paper is organized as follows. A brief review of related literature is given for the

rest of this section. In section 2 We describe the model and characterize the equilibrium. In section

3 we then identify the optimality of single prize for weak concave cost functions. In section 4, by

considering constant elastic and piecewise linear cost functions respectively, we show the subtlety of

the role of convexity. In section 5 the relationship between the two objectives (maximal and total

performance) is identified. Finally, section 6 concludes.

Related literature

The earlier works on contests with maximal performance objective typically take a certain prize al-

location as given. Given a single prize, Nalebuff and Stiglitz (1983), Taylor (1995) and Fullerton

and McAfee (1999) find that restricting contestant entry is beneficial for the principal under various

settings. Still assuming a single prize (size being endogenously chosen by contestants), Che and Gale

(2003) find the similar results for maximal surplus objective (performance net of prize). Consider-

ing both maximal and total performance objective, Moldovanu and Sela (2006) study a two-stage

contest and compare the outcome from the two-round contest to the outcome from a single-round

contest with a single prize. Assuming an exogenous minimal performance threshold, Megidish and

Sela (2013) compare the outcome from a contest with a single prize to the outcome in a stylized

random contest. They find if the threshold is too high then the random contest may induce more total

performance and maximal performance.

Instead of fixed prize allocations, Kaplan et al. (2002) and Kaplan et al. (2003) consider particular

forms of performance-dependent reward allocations and find qualitatively different behavior of con-

testants under incomplete and complete information. Cohen et al. (2008) study optimal performance-

dependent reward allocations and they find that the optimal reward may be decreasing in performance

and there is no possibility for optimality of multiple rewards.

There has been a large literature in contest theory studying contests with noised performances

following the pioneering work on rent-seeking by Tullock (1980). There is also a number of studies

of all-pay auctions with complete information, e.g.,Baye et al. (1996), Barut and Kovenock (1998),

Clark and Riis (1998) and Glazer and Hassin (1988). These works are however more remote to ours

since the performances are not noised in our incomplete information setting.

A more detailed and excellent survey for the literature on optimal prize allocation in general is

provided by Sisak (2009).
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2 The model

A risk-neutral principal initiates a contest in which there are N risk-neutral contestants. The contes-

tants differ in endowed proficiency of a certain skill relevant for the contest, which are independent

draws from a common distribution F (s) with a density function f(s) > 0 on [s, s̄]. For convenience,

we denote the inverse function of F (s) simply by s(F ) and similarly the inverse function of F (x) by

x(F ). To produce performance q, a contestant with skill s incurs a non-recoverable cost which takes

a separable functional form 1
A(s)B(q) with A(∙) > 0, B′(∙) > 0. It is natural that given a certain q, a

more skilled contestant is more cost efficient, i.e., A′(∙) > 0.

A total budget of $1 for the contest is divided into N − 1 prizes, denoted a1, ∙ ∙ ∙ , aN−1, i.e.,
∑N−1

n=1 an = 1.1 Without loss of generality, we assume a1 ≥ a2 ≥ ∙ ∙ ∙ ≥ aN−1 ≥ 0. The rule of the

contest is such that the contestant with the best performance wins the first prize a1 and the contestant

with the second highest performance wins the second prize a2, and so on.

A unique symmetric monotone equilibrium can be derived by the following standard procedure.

In the equilibrium the probability of a contestant with skill s winning the nth prize, an, is

πn(s) =

(
N − 1
n − 1

)

(1 − F (s))n−1F (s)N−n ≡ Pn(F (s)), (1)

which implies

d

ds
πn(s) =

dPn(F (s))
dF (s)

f(s).

It is clear that Pn(0) = 0 for n = 1, ∙ ∙ ∙ , N − 1. Denote the equilibrium performance function by q(s).

The incentive compatibility condition,

s = arg max
ŝ

N−1∑

n=1

πn(ŝ)an −
1

A(s)
B(q(ŝ))

implies that the equilibrium performance function must satisfy

N−1∑

n=1

π′
n(s)an =

1
A(s)

B′(q(s))q′(s). (2)

Since B′(∙) > 0, the monotonicity of q(s) is guaranteed if
∑N−1

n=1 π′
n(s)an ≥ 0, which is shown to be

true below.

The following definition is repeatedly used in the rest of this paper.

Definition 1 (Single-crossing). A function defined on a certain interval has single crossing property

if it crosses zero only once and from below. If function g1 crosses another function g2 only once and

from below, then we say g1 single-crosses g2.

Lemma 1.
∑N−1

n=1 π′
n(s)an ≥ 0 or

∑N−1
n=1 P ′

n(F )an ≥ 0.

1It is obvious that a positive amount of prize for the lowest rank is a waste of money since anyone ranked the lowest will

earn that prize and it does not provide any incentive.
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Sketch of Proof. The proof uses the simple fact that
∑N

n=1 Pn(F ) = 1 for any F , which simply says that

any contestant can win one prize for sure if there are N prizes available. This implies
∑N

n=1 P
′
n(F ) = 0

(which in turn implies the fact
∑N

n=1 P
′′
n(F ) = 0 which is used in the proof of Lemma 6). Combined

with the discrete single-crossing property of sequence {P ′
n(F )} (for any given F ), a discrete version

of the amplification lemma in the next section can be used to establish the statement because {an} is

a non-increasing sequence. See Appendix A for details.

Because A′(s) > 0, the single crossing difference condition (from Athey (2001) or Milgrom (2004))

for the sufficiency of equilibrium existence is satisfied. With the initial condition q(0) = 0, the solution

to the differential equation in (2) is unique and can be derived straightforwardly from (2).

Theorem 1. There exists a unique symmetric increasing equilibrium in the contest. The equilibrium

performance function is

q(s) = B−1

(∫ s

s
A(x)

N−1∑

n=1

π′
n(x)andx

)

. (3)

3 Optimality of single prize for weak concave cost functions

Given a prize allocation {an}, the expected performance from the champion, i.e., the principal’s

expected revenue under maximal performance objective, is E[q(F 1:N )] =
∫ s̄
s q(s)NF (s)N−1f(s)ds,

where F 1:N represents the first highest order statistics of N independent draws from distribution F .

On the other hand, the expected total performance from all contestants is simply N
∫ s̄
s q(s)f(s)ds.

Hence the expected revenue for the two objectives can be written as, for i ∈ {0, N − 1},

Ri = N

∫ s̄

s
q(s)F (s)if(s)ds

= N

∫ s̄

s
B−1

(∫ s

s
A(x)

N−1∑

n=1

π′
n(x)andx

)

F (s)if(s)ds. (4)

The principal chooses {an} to maximize Ri under respective objective.

Throughout the proofs of this paper, the following intuitive argument is repeatedly used, which

we state as a lemma.

Lemma 2 (Amplification lemma). On an interval (a, b), suppose g(F ) has the single-crossing property.

Then for a non-decreasing function h(F ) ≥ 0 , we have

∫ b

a
g(F )dF ≥ 0 =⇒

∫ b

a
g(F )h(F )dF ≥ 0.

If we define g(F ) = g1(F ) − g2(F ), then it is clear that the following is also true: if a function g1(F )

single-crosses another function g2(F ), then

∫ b

a
(g1(F ) − g2(F ))dF ≥ 0 =⇒

∫ b

a
(g1(F ) − g2(F ))h(F )dF ≥ 0.
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The following lemma gives important insights for the optimality of single prize (for both the two

common objectives).

Lemma 3. On the open unit interval (0, 1), for j ∈ {2, ∙ ∙ ∙ , N − 1}, as a function of F ,

• P1(F ) − Pj(F ) has the single-crossing property, or P1(F ) single-crosses Pj(F ).

• P ′
1(F ) − P ′

j(F ) has the single-crossing property, or P ′
1(F ) single-crosses P ′

j(F ).

• Let F ∗
j be the point at which P ′

1(F ) − P ′
j(F ) = 0 and F ∗∗

j the point at which P1(F ) − Pj(F ) = 0.

Then F ∗∗
j ≥ F ∗

j .

Proof. See Appendix B.

Figure 1 illustrates Lemma 3 nicely when N = 5.
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Figure 1: Pn(F ) and P ′
n(F ) when N = 5, n = 1, ∙ ∙ ∙ , N.

In addition, there is a simple fact about the ex-ante probability of winning nth prize for a contes-

tant: for any n,

∫ 1

0
Pn(F )dF =

1
N

. (5)

Immediately it follows that

∫ 1

0
(P1(F ) − Pj(F )) dF =

∫ 1

0

∫ F

0

(
P ′

1(F) − P ′
j(F)

)
dFdF = 0, (6)

since Pn(0) = 0 for any n 6= N . Combining the amplification lemma, Lemma 3 and (6), we have the

following lemma.

Lemma 4. For a non-negative function A(F ) with A′(F ) > 0 on the open unit interval,
∫ F
0 A(F)

(
P ′

1(F)−

P ′
j(F)

)
dF , as a function of F , has the single-crossing property. Moreover,

∫ 1

0

∫ F

0
A(F)

(
P ′

1(F) − P ′
j(F)

)
dFdF ≥ 0. (7)
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Sketch of Proof. Let F ∗
j be the one defined in Lemma (3). The amplification lemma can be applied

with the help of a new function defined as follows,

Āj(F ) =






A(F ) if F ≤ F ∗
j

A(F ∗
j ) if F > F ∗

j

,

with which the reader may already be able to visualize the geometry of a complete proof. See Appendix

C for details.

By the amplification lemma again and Lemma 4, the following proposition is easy to show.

Proposition 1. If B(q) is concave or linear, then it is optimal to set a single prize for both total perfor-

mance objective and maximal performance objective.

Proof. Following (4), for i ∈ {0, N − 1}, let

τj(ε) ≡
∫ s̄
s B−1

(
∫ s
s A(x)

[

π′
1(x)(a1 + ε) + π′

j(x)(aj − ε) +
∑N−1

n 6=1,j π′
n(x)an

]

dx

)

F (s)if(s)ds. (8)

Then

d

dε
τj(ε)

∣
∣
∣
∣
ε=0

=
∫ s̄

s

1
B′(q(s))

∫ s

s
A(x)

(
π′

1(x) − π′
j(x)

)
dxF (s)if(s)ds.

The inverse function of distribution function F (s) is denoted by s(F ) and F (x) by x(F ). By change of

variable method,

d

dε
τj(ε)

∣
∣
∣
∣
ε=0

=
∫ 1

0

1
B′(q(s(F )))

∫ F

0
A(x(F))

(
P ′

1(F) − P ′
j(F)

)
dFF idF. (9)

Because A′(x) > 0, A(x(F)) is increasing in F . By Lemma 4,
∫ F
0 A(x(F))

(
P ′

1(F) − P ′
j(F)

)
dFF i

also crosses zero only once and from below. If B(q) is concave or linear, then d
dF B′(q(s(F ))) =

d
dqB′(q(s(F ))) d

dsq(s)
d

dF s(F ) ≤ 0. That is, the inverse of B′(q(s(F ))) is non-decreasing in F and non-

negative. Moreover, F i is also non-decreasing and non-negative. By the amplification lemma and

Lemma 4, we have d
dετj(ε)

∣
∣
ε=0

≥ 0 and this completes the proof.

Proposition 1 shows that optimality of single prize under maximal performance objective is valid

for any separable cost function with weak concavity, and hence extends the result in Chawla et al.

(2015) in which B(q) = q in their model.

4 Convex cost functions

Moldovanu and Sela (2001) find that it may be optimal to set multiple prizes under total performance

objective if the cost function is convex enough in effort. It is interesting to know wether it may also

be optimal to use a multi-prize allocation to maximize the maximal performance.
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4.1 Incentivizing the champion by rewarding the champion only

In this direction, the role of convexity is more subtle, as we show below that if the cost function

is constant elastic (CE) in performance then there is no role for convexity when the number of the

contestants is three.

Lemma 5. For any {an} where a1 6= 1,
∑N−1

n=1 P ′
n(F )an

∑N−1
n=1 Pn(F )an

<
P ′

1(F )
P1(F ) and d

dF

(
P1(F )

∑N−1
n=1 Pn(F )an

)

> 0.

Proof. See Appendix D.

Proposition 2. Consider the case where C(s, q) = 1
A(s)q

1
σ , σ > 0. If there are only 3 contestants, it is

always optimal to set a single prize for a principal with maximal performance objective.

Proof. See Appendix E.

The result above may sound surprising, given the fact that the cost function can exhibit arbitrary

degree of convexity in performance. In particular, Moldovanu and Sela (2001) have given an example

of optimality of multi-prize allocations under total performance objective with σ = 1
2 , our result shows

the fact that the qualitative result of optimal prize allocation problem under maximal performance

objective can be very different from the one under total performance objective.

4.2 Incentivizing the champion by rewarding the runners-up

From Lemma 4,
∫ F
0 A(x(F))

[
P ′

1(F)−P ′
2(F)

]
dF has single crossing property on the open unit interval.

For a given A(∙) function, let F̄2 be the point at which
∫ F̄2

0 A(x(F))
[
P ′

1(F) − P ′
j(F)

]
dF = 0.

We now show that if the cost function is piecewise linear in performance, then it can be optimal to

have multiple prizes for the principal with either objective. Specifically, consider the following case2

B(q) =






q 0 ≤ q ≤ q̄2

θq − λ q > q̄2

, (10)

where λ = (θ − 1)q̄2, and q̄2 = q(s(F̄2)).3 By the convexity assumption θ > 0 and λ > 0.

Following (4), define

τ2(ε) ≡
∫ s̄

s
B−1

(∫ s

s
A(x)

[

π′
1(x)(1 − ε) + π′

2(x)(0 + ε) +
N−1∑

n 6=1,2

π′
n(x)an

]

dx

)

F (s)N−1f(s)ds.

2The assumed piecewise linear function B(∙) has a kink at q∗2 , i.e., not differentiable at q∗2 . However, one can always

smooth the kink away by defining a smooth function on a small segment containing q∗2 such that B(∙) is differentiable

everywhere and the derivative is continuous. And the segment can be arbitrarily small such that it does not affect the

qualitative conclusion below. For the purpose of clear exposition, we take the limiting case as legal.
3Since we have a degree of freedom from λ, for any q∗2 , there is always a corresponding λ such that B(∙) is continuous at

q̄2.
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Then

−
d

dε
τ2(ε)

∣
∣
∣
∣
ε=0

=
∫ 1

0

1
B′(q(s(F )))

∫ F

0
A(x(F))

[

P ′
1(F) − P ′

2(F)

]

dFFN−1dF

=
∫ F̄2

0

∫ F

0
A(x(F))

[

P ′
1(F) − P ′

2(F)

]

dFFN−1dF

+
1
θ

∫ 1

F̄2

∫ F

0
A(x(F))

[

P ′
1(F) − P ′

2(F)

]

dFFN−1dF.

By the definition of F̄2 above, the first double integral is negative while the second one is positive.

Since both integrals are finite, there exists a θ̄ such that for θ ≥ θ̄, − d
dετ2(ε) < 0. We then have the

following result.

Proposition 3. If the B(∙) function takes the form as in (10), then a multi-prize allocation is optimal for

both objectives when θ is large enough.

The results from the CE case in the previous section and this piecewise linear case reveal the fact

that not only the convexity but also its exact form is important for the optimality prize allocations with

maximal performance objective.

5 The relationship between the two objectives

An interesting observation from Proposition 1 and Proposition 3 is that the optimality condition of

single prize or multi-prize is valid for both objectives under the similar qualitative condition. In

Proposition 2 we find that in the CE case convexity is irrelevant for the optimal prize allocation for

maximal performance objective when there are 3 contestants. On the other hand, enough convexity

can lead to optimality of multi-prize for total performance objective even in that case. One may

wonder if there is any relationship between the two objectives in terms of optimal prize allocations.

Indeed, we show below that the following interesting relationship holds.

Lemma 6. For F ∈ (0, 1), d
dF

P ′
1(F )

∑N−1
n=1 P ′

n(F )an
> 0 and hence P ′

1(F ) single-crosses
∑N−1

n=1 P ′
n(F )an.

Proof. See Appendix F.

Proposition 4. If it is optimal to set a single prize when the objective is total performance, then it is also

optimal to set a single prize for maximal performance objective. On the other hand, if it is optimal to set

multiple positive prizes when the objective is maximal performance objective, then it is also optimal to set

multiple positive prizes for total performance objective.

Proof. The first statement in the proposition says that if

∫ 1
0 B−1

(
∫ F
0 A(x(F))

[

P ′
1(F)

]

dF

)

dF ≥
∫ 1
0 B−1

(
∫ F
0 A(x(F))

[
∑N−1

n=1 P ′
n(F)an

]

dF

)

dF

then

∫ 1
0 B−1

(
∫ F
0 A(x(F))

[

P ′
1(F)

]

dF

)

FN−1dF ≥
∫ 1
0 B−1

(
∫ F
0 A(x(F))

[
∑N−1

n=1 P ′
n(F)an

]

dF

)

FN−1dF.
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Obviously, by the amplification lemma the statement above is true if B−1
( ∫ F

0 A(x(F))
[
P ′

1(F)
]
dF
)

single-crosses B−1
( ∫ F

0 A(x(F))
[∑N−1

n=1 P ′
n(F)an

]
dF
)
. The single-crossing condition can be met if

∫ F
0 A(x(F))

[
P ′

1(F)
]
dF single-crosses

∫ F
0 A(x(F))

[∑N−1
n=1 P ′

n(F)an

]
dF . Since Lemma 6 shows that

P ′
1(F ) single-crosses

∑N−1
n=1 P ′

n(F )an, by the spirit of the geometry from Lemma 3 to Lemma 4, the

single crossing condition is satisfied and so the first statement is true. The second statement is contra-

positive to the first one and this completes the proof.

6 Conclusion

By studying a standard model in a private information environment, we generalize the previous result

for optimality of different prize allocations under maximal performance objective. We also find that

optimality of multi-prize is also possible even under maximal performance objective. A comparison of

different forms of cost function illustrates the importance of the elasticity of costs for the optimal prize

allocation. In terms of optimal prize allocation, an interesting relationship between the two objectives

is found. Findings on the properties of the win probability functions may be useful for future works.
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Appendices

A Proof of Lemma 1

First,

N−1∑

n=1

π′
n(s)an = f(s)

N−1∑

n=1

dPn(F (s))
dF (s)

≥ 0, if
N−1∑

n=1

dPn(F (s))
dF (s)

≥ 0.

It is clear to see that

Pn(F ) =

(
N − 1
n − 1

)

(1 − F )n−1FN−n,
N∑

n=1

Pn(F ) = 1,
N∑

n=1

P ′
n(F ) = 0,

N−1∑

n=1

P ′
n(F ) ≥ 0

since P ′
N (F ) ≤ 0 for any F . Also, for n ∈ {1, ∙ ∙ ∙ , N − 1},

P ′
n(F ) =

(
N − 1
n − 1

)

(1 − F )n−2FN−n−1
(
N − n − (N − 1)F

)
.

For any F , if and only if n > (N − 1)(1 − F ) + 1, P ′
n(F ) < 0. For a given F , let P ′

n∗(F ) be the

first negative element in the sequence {P ′
n(F )}N

n=1. For a1 ≥ ∙ ∙ ∙ ≥ aN ≥ 0,
∑N−1

n=1 P ′
n(F )an =

∑n∗−1
n=1 P ′

n(F )an +
∑N−1

n=n∗ P ′
n(F )an ≥

∑n∗−1
n=1 P ′

n(F )an∗ +
∑N−1

n=n∗ P ′
n(F )an∗ = an∗

∑N−1
n=1 P ′

n(F ) ≥ 0.

The argument above is an application of the discrete version of the amplification lemma.

B Proof of Lemma 3

First we show that P1(F ) − Pj(F ) crosses zero only once and from below, i.e., P1(F ) and Pj(F )

intercept with each other only once on the open unit interval.

P1(F ) − Pj(F ) = FN−1 −

(
N − 1
j − 1

)

(1 − F )j−1FN−j

= FN−j

[

F j−1 −

(
N − 1
j − 1

)

(1 − F )j−1

]

≡ FN−j
(
F j−1 − [θ(1 − F )]j−1

)
.

where θ =
(
N−1
j−1

)1/(j−1)
≥ 1. Obviously, F j−1 intercepts [θ(1 − F )]j−1 only once at F ∗ = θ

1+θ < 1 and

from below.

Second, it is straightforward to derive

P ′
j(F ) =

(
N − 1
j − 1

)

(1 − F )j−2FN−j−1
(
(N − j) − (N − 1)F

)
,

P ′
1(F ) − P ′

j(F ) = (N − 1)FN−j−1

[

F j−1 −

(
N − 1
j − 1

)

(1 − F )j−2
(N − j

N − 1
− F

)]

.

Define

G(F ) ≡

(
N − 1
j − 1

)

(1 − F )j−2

(
N − j

N − 1
− F

)

11



Then

G′(F ) = −

(
N − 1
j − 1

)

(1 − F )j−3

[(

1 −
N − j

N − 1

)

+ (j − 1)

(
N − j

N − 1
− F

)]

Function G(F ) ≶ 0 for F ≷ N−j
N−1 and G′(F ) ≤ 0 for F ≤ N−j

N−1 . Hence, G(F ) is positive and decreasing

on [0, N−j
N−1 ] and negative on [N−j

N−1 , 1], while F j−1 is always increasing and has a value zero at the origin.

Thus, there is a unique point F ∗ at which d
dF

(
P1(F ) − Pj(F )

)
= 0. And for F ≷ F ∗, d

dF

(
P1(F ) −

Pj(F )
)
≷ 0.

Finally, when d
dF

(
P1(F ∗

j )−Pj(F ∗
j )
)

= 0, P1(F ∗
j )−Pj(F ∗

j ) ≤ 0. By the first results above, we have

F ∗∗
j ≥ F ∗

j .

C Proof of Lemma 4

From (6),

∫ 1

0

(
P1(F ) − Pj(F )

)
dF =

∫ 1

0

∫ F

0

(
P ′

1(F) − P ′
j(F)

)
dFdF = 0.

By assumption A′(F ) > 0. From Lemma 3 we know that both P1(F )−Pj(F ) and P ′
1(F )−P ′

j(F ) have

the single-crossing property. Let F ∗
j be the point at which P ′

1(F ) − P ′
j(F ) = 0. Define

Āj(F ) ≡






A(F ) if F ≤ F ∗
j

A(F ∗
j ) if F > F ∗

j .

Then by the amplification lemma,

∫ 1

0
Āj(F )

(
P1(F ) − Pj(F )

)
dF ≥ 0, (11)

because Āj(s) is a non-decreasing function. Inequality (12) is equivalent to

∫ 1

0

[ ∫ F

0
Āj(F )

(

P ′
1(F) − P ′

j(F)

)

dF

]

dF ≥ 0,

since Pn(0) = 0 for n = 1, ∙ ∙ ∙ , N − 1.

Recall the single-crossing property of P ′
1(F ) − P ′

j(F ) and the definition of F ∗
j .

When F ≤ F ≤ F ∗
j , P ′

1(F)−P ′
j(F) ≤ 0 and A(F) ≤ A(F ), which implies A(F)

(
P ′

1(F)−P ′
j(F)

)
≥

Āj(F )
(
P ′

1(F) − P ′
j(F)

)
. Hence, for any F ≤ F ∗

j ,

∫ F

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dF ≥
∫ F

0
Āj(F )

(

P ′
1(F) − P ′

j(F)

)

dF . (12)

For any F > F ∗
j , Āj(F ) = A(F ∗

j ) and we write

∫ F

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dF =
∫ F ∗

j

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dF +
∫ F

F ∗
j

A(F)

(

P ′
1(F) − P ′

j(F)

)

dF ,

∫ F

0
Āj(F )

(

P ′
1(F) − P ′

j(F)

)

dF =
∫ F ∗

j

0
A(F ∗

j )

(

P ′
1(F) − P ′

j(F)

)

dF +
∫ F

F ∗
j

A(F ∗
j )

(

P ′
1(F) − P ′

j(F)

)

dF .

12



When F > F ∗
j , P ′

1(F) − P ′
j(F) > 0 and A(F) > A(F ), which implies A(F)

(
P ′

1(F) − P ′
j(F)

)
>

Āj(F ∗
j )
(
P ′

1(F) − P ′
j(F)

)
. Hence, for any F > F ∗

j and consequently for any F , inequality (13) holds.

Therefore, for any F and any j,
∫ F

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dF ≥
∫ F

0
Āj(F )

(

P ′
1(F) − P ′

j(F)

)

dF ,

which implies
∫ 1

0

∫ F

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dFdF ≥
∫ 1

0

∫ F

0
Āj(F )

(

P ′
1(F) − P ′

j(F)

)

dFdF

≥ 0.

That is, (7) is true.

Furthermore, it is obvious that
∫ F
0 A(F)

(

P ′
1(F) − P ′

j(F)

)

dF first crosses zero at some point

when F increases from 0 to 1, say at F̃j . We must have that for F < F̃j the integral is negative and

P ′
1(F̃j)−P ′

j(F̃j) > 0 by the single-crossing property of P ′
1(F )−P ′

j(F ) and the non-negativity of A(F ).4

Thus for F > F̃j ,
∫ F
0 A(F)

(

P ′
1(F)−P ′

j(F)

)

dF > 0 by the single-crossing property of P ′
1(F)−P ′

j(F),

which completes the proof.

D Proof of Lemma 5

Because P ′
1(F )

P1(F ) = N−1
F , the first inequality is equivalent to

F
N−1∑

n=1

P ′
n(F )an < (N − 1)

N−1∑

n=1

Pn(F )an.

For each n ≥ 2,

FP ′
n(F )an − (N − 1)Pn(F )an(
N−1
n−1

)
(1 − F )n−2FN−nan

= 1 − n < 0.

Therefore, the first inequality holds and the second one follows immediately since both P1(F ) and
∑N−1

n=1 Pn(F )an are positive.

E Proof of Proposition 2

When B(q) = q
1
σ , the equilibrium q(s) can be solved as

q(s) =

(∫ s

0
A(x)

N−1∑

n=1

π′
n(x)andx

)σ

(13)

Let A(F ) ≡ A(s(F )), which is increasing in F . The expected performance of the champion is

∫ 1

0

[ ∫ F

0
A(F)

(N−1∑

n=1

P ′
n(F)an

)

dF

]σ

FN−1dF. (14)

4If P ′
1(F̃) − P ′

j(F̃) ≤ 0, then
∫ F̃

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dF < 0, which contradicts the definition of F̃ .
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Let

τj(ε) =
∫ 1

0

[ ∫ F

0
A(F)

(

P ′
1(F)(a1 + ε) + P ′

j(F)(aj − ε) +
N∑

n 6=1,j

P ′
n(F)an

)

dF

]σ

FN−1dF

Then the inequality is true if for every j ∈ {2, ∙ ∙ ∙ , N − 1},

dτj(ε)
dε

∣
∣
∣
∣
ε=0

=
∫ 1

0
σ

(∫ F

0
A(F)

(N−1∑

n=1

P ′
n(F)an

)
dF

)σ−1 ∫ F

0
A(F)

(

P ′
1(F) − P ′

j(F)

)

dFFN−1dF ≥ 0.

Lemma 4 implies that
(∫ F

0 A(F)
(∑N−1

n=1 P ′
n(F)an

)
dF
)−1 ∫ F

0 A(F)
(
P ′

1(F) − P ′
j(F)

)
dFFN−1, as

a function of F , also has the single-crossing property. Because
(∫ F

0 A(F)
(∑N−1

n=1 P ′
n(F)an

)
dF
)σ

is

positive and nondecreasing in F , by the amplification lemma, the inequality is true in this case if

∫ 1
0

∫ F
0 A(F)

(
P ′

1(F)−P ′
j(F)

)
dF

∫ F
0 A(F)

(∑N−1
n=1 P ′

n(F)an

)
dF

FN−1dF ≥ 0. (15)

Recall that P1(F ) = FN−1. Therefore, by Lemma 3, equation (6), Lemma 5 and the amplification

lemma,

∫ 1

0

∫ F
0

(
P ′

1(F) − P ′
j(F)

)
dF

∫ F
0

(∑N−1
n=1 P ′

n(F)an

)
dF

FN−1dF =
∫ 1

0
(P1(F ) − Pj(F ))

P1(F )
∑N−1

n=1 Pn(F )an

dF ≥ 0. (16)

Thus (16) is true if for every F , if

∫ F
0 A(F)

(
P ′

1(F) − P ′
j(F)

)
dF

∫ F
0 A(F)

(∑N−1
n=1 P ′

n(F)an

)
dF

≥

∫ F
0

(
P ′

1(F) − P ′
j(F)

)
dF

∫ F
0

(∑N−1
n=1 P ′

n(F)an

)
dF

. (17)

Consider the situation where the principal only consider two prizes at most although there are

N contestants, i.e., a1 + a2 = 1. Notice that for contests with only 3 contestants the optimal prize

allocation will never offer more than two positive prizes. In order to prove inequality (18) for this

situation, we introduce a useful theorem from Wijsman (1985).

Theorem 2 (Wijsman’s inequality). Let μ be a measure on the real line R and let fi, gi (i = 1, 2) be four

Borel-measurable functions: R → R such that f2 ≥ 0, g2 ≥ 0, and
∫

figjdμ < ∞ (i, j = 1, 2). If f1/f2

and g1/g2 are monotonic in the same direction, then
∫

f1g1dμ

∫
f2g2dμ ≥

∫
f1g2dμ

∫
f2g1dμ.

If in addition,
∫

f1g2dμ > 0 and
∫

f2g2dμ > 0, then
∫

f1g1dμ
∫

f1g2dμ
≥

∫
f2g1dμ

∫
f2g2dμ

.

In our case, let

f1 = A(F), g1 = P ′
1(F) − P ′

2(F), f2 = 1, g2 = P ′
1(F)a1 + P ′

2(F)(1 − a1).
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Obviously,
∫

f1g2dμ > 0 and
∫

f2g2dμ > 0 sine we have already shown in Lemma 1 that
∑N−1

n=1 P ′
n(F )an >

0 for any F . Then because f1/f2 = A(F) is non-decreasing, (18) is true if

d

dF

(
P ′

1(F ) − P ′
2(F )

P ′
1(F )a1 + P ′

2(F )(1 − a1)

)

≥ 0.

It can be verified that

d

dF

(
P ′

1(F ) − P ′
2(F )

P ′
1(F )a1 + P ′

2(F )(1 − a1)

)

=
N − 2

[(1 − F )(N(1 − a1) − 1) + (2a1 − 1)]2
> 0

Therefore, when N = 3, inequality (15) holds if σ ≥ 0.

F Proof of Lemma 6

Since P ′
1(F ) and P ′′

1 (F ) are both nonnegative and P ′
1(F )

P ′′
1 (F )

= F
N−2 , d

dF
P ′

1(F )
∑N−1

n=1 P ′
n(F )an

> 0 is equivalent to

P ′′
1 (F )

∑N−1
n=1 P ′

n(F )an − P ′
1(F )

∑N−1
n=1 P ′′

n(F )an > 0 or

N−1∑

n=1

[(N − 2)P ′
n(F ) − FP ′′

n(F )]an > 0. (18)

For each n,

(N − 2)P ′
n(F ) − FP ′′

n(F ) =

(
N − 1
n − 1

)

FN−n−1(1 − F )n−3(n − 1)(N − n − (N − 2)F )

Hence, for any given F , (N − 2)P ′
n(F ) − FP ′′

n(F ) is negative if and only if n > N − (N − 2)F . And

since
∑N

n=1 P
′
n(F ) = 0 for any given F , we have

∑N
n=1 P

′′
n(F ) = 0. Thus,

N−1∑

n=1

(
(N − 2)P ′

n(F ) − FP ′′
n(F )

)
= −(N − 2)P ′

N (F ) + FP ′′
N (F )

= (N − 2)(N − 1)(1 − F )N−2 + F (N − 2)(N − 1)(1 − F )N−3

= (N − 2)(N − 1)(1 − F )N−3

> 0.

Hence, by the same spirit of the discrete version of the amplification lemma as in the proof of Lemma

1, (19) is true and d
dF

P ′
1(F )

∑N−1
n=1 P ′

n(F )an
> 0.

Observe that P ′
1(0) = 0 ≤

∑N−1
n=1 P ′

n(0)an = (N − 1)aN−1, and P ′
1(1) = N − 1 >

∑N−1
n=1 P ′

n(1)an =

(N − 1)(a1 − a2). Hence P ′
1(F ) single-crosses

∑N−1
n=1 P ′

n(F )an and this completes the proof.
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